

Quantum Mechanics

Academic Year: 2023-2024

1. Information on the Programme					
Higher education institution	University of Halabja				
College	College of Science				
Department	Physics				
Field of study	Quantum Mechanics				
Cycle of study ¹	First Cycle				
Specialization/ Study program	N/A				
Form of education	Full time				

2. Information on the Discipline						
Discipline Name	Quantum Mechanics	Discipline Code	UOH102502			
ECTS	5	Language	English			
Lecturer (Theory)	Ala Hamd Hssain	Home page	https://sites.google.com/uoh.edu.iq/al la-hamid			
E-mail	Ala.hssain@uoh.edu.iq	Tel	+964 7701599351			
Practical/Semina r/ laboratory/ project Lecturer		Home page				
E-mail		Tel				
Study Year	1	Semester	1 th			
Assessment type ²	Continuous Evaluation	Discipline status				
Content ³	CD	Mandatory ⁴	MD			

3. Prerequisites (if applicable)						
Curriculum-related	Math up to and including differential equations and linear algebra (matrices), A course in modern physics including a qualitative understanding of wave/particle duality and basics about an atomic theory like electron energy levels and how light and matter (electrons) interact.					
Skills-related	Scientific Imagination					

	No. of Weeks	1st Week	2nd Week	3rd Week	4th Week	5th Week	6th Week	7th Week	8th Week	9th Week	10th Week	11th Week	12th Week	13th Week	14th and 15th Week (Final	Total
	Theoritical	3	3	3	3	3	3	3		3	3	3	3	3		36
Cont	Practice															0
lact I	Lab./Tutorial															0
Contact Hours	Fieldtrips/Visits							1			1					2
	Project															0
	Curriculum (articles+media+net)						1			1			1			3
	Curriculum (Books)	1	1													2
	Homework	1	1			1		1			1		1			6
Se	Quizzes				1		1			1		1		1		5
Self Study	Assignments					1							1			2
ıdy	Reports															0
	Presentation								1							1
	Midterm Exam (Thr. + Pr.)	1			3											4
	Final Exam (Thr. + Pr.)	1													6	6

Contact Hours	59	Self	66		
Total Workload	125	ECTS		5	
Items	NO.	TF.	WL.	ECTS	
Lecture (Thr.)	13	3	39	1.44	
Lecture (Pr.)	0	0	0	0.00	
Lecture (Tut.)	0	0	0	0.00	
Fieldtrips/Visits	2	10	20	0.74	
Project	0	0	0	0.00	
Curriculum(articles+media+net)	10	0.2	2	0.07	
Curriculum (Books)	40	0.5	20	0.74	
Homework	6	2	12	0.44	
Quizzes	5	0.2	1	0.04	
Assignments	2	3	6	0.22	
Reports	0	0	0	0.00	
Presentation	1	3	3	0.11	
Midterm Exam (Thr. + Pr.)	1	8	8	0.30	
Final Exam (Thr. + Pr.)	1	14	14	0.52	

4. Total Estimated Time (tead	ching hours per semester ⁵)
-------------------------------	---

5. Conditions (if applicable)				
For the Theoretical	The student must respect his classmates and teachers. Students must present 90% of lectures.			
For the Practical/Lab.				

6. Cumulated specific competences					
Professional competencies	Problem-solving, Thinking like a physicist.				
Transversal competences	Data analyzing, Problem-solving, teamwork, and critical thinking.				

7. Discipline objectives (based on the cumulated specific competencie	7. Discipline objectives	(based on the cumula	ated specific competencie
---	--------------------------	----------------------	---------------------------

	Quantum mechanics is the fundamental theory to describe the			
General objective	infinitesimally small objects, elucidating the physical properties of			
	nature at the scale of atoms and subatomic particles.			

On successful completion of the Course, you should be able to:

- 1. Have a historical background of some theories that led to the foundation of Quantum Mechanics. Topics include: Black body radiations, photoelectric effect, de Broglie waves, and the wave-particle duality of matter and light.
- 2. Introduction to wave mechanics: Schrödinger's equation, wave functions, wave packets, probability amplitudes, the Heisenberg uncertainty principle. Solutions to Schrödinger's equation in one dimension: transmission and reflection at a barrier, barrier penetration, potential wells, the simple harmonic oscillator.
- 3. Schrödinger's equation in three dimensions: central potentials and introduction to hydrogenic systems.

8. Content					
Theoretical- Number of hours	Teaching	Observation			
First week	Introduction: Particle Aspect of Radiation, Wave Aspect of Particles, Heisenberg's Uncertainty Principle, Probabilistic Interpretation, Atomic Transitions and Spectroscopy, Bohr Model of the Hydrogen Atom, Wave Packets	3 hours			
Second week	Mathematical Tools of Quantum Mechanics, The Hilbert Space and Wave Functions, Dimension and Basis of a Vector Space, Dirac Notation, Operators, Hermitian Adjoint, Functions of Operators, Eigenvalues and Eigenvectors of an Operator	3 hours			
Third week	Representation in Discrete Bases, Representation in Continuous Bases, Parity Operator, Matrix and Wave Mechanics	3 hours			

Specific objectives (Learning Outcomes)

Fourth week	PostulatesofQuantumMechanics,TheStateofaSystem,ObservablesandOperators	3 hours
Fifth week	Time Evolution of the System's State Schrödinger Equation and Wave Packet, Symmetries and Conservation Laws	3 hours
Sixth week	One-DimensionalProblems,DiscreteSpectrum(BoundStates),ContinuousSpectrum(UnboundStates),MixedSpectrum,	3 hours
Seventh week	The Free Particle: Continuous States, The Potential Step, The Potential Barrier and Well, The Tunneling Effect, The Infinite Square Well Potential,	3 hours
Eighth week		3 hours
Ninth week		3 hours
Eleventh week		3 hours
Twelfth week		3 hours
Thirteenth week		3 hours

9. Compulsory bibliography

1- Zettili, Nouredine (2009). Quantum Mechanics: Concepts and Applications. Chichester, UK: Wiley.

Optional bibliography

1- David McMahon (2005). Quantum Mechanics Demystified-McGraw-Hill Professional

10. Corroborating the discipline content with the expectations of the epistemic community representatives, of the professional associations, and of the relevant employers in the corresponding field

- 1. Fundamental of physics
- 2. Technical Knowledge
- 3. Problem-solving
- 4. Use mathematics to solve problems.
- 5. How to address problems

11. Assessment				
Type of Activity	Assessment criteria ²	Assessment type	Final grade Percentage	
Theoretical		writing examination		
Practical/Laboratory				
Activity during semester	Oral Exam	Assignment, Seminars Quiz &Class Activity	%40	
Performance standards:				

Theoretical Lecturer	Ala Hamd Hssain
Practice Lecturer	

Approved by the Curriculum Development committee		
1	م.ي سامان سەركەوت جعفر	
2	د.ئالا حامد حسين	
3	م.ي بهاالدين محمد حسين	
	م.ی هیوا عبدالله	

Notes:

1 Cycle of studies - choose one of the three options: Bachelor «1», Master «2», Ph.D. «3»

2 (Exam: oral examination, written exam), and (Continous Evaluation(CE), portfolio).

3 Discipline status (content) - for the Bachelor level, choose one of the options: FD (fundamental (General) discipline), PF (Preparatory Disciplines in the Field), SD (Specialty Disciplines), CD (Complementary Disciplines), DU (disciplines based on the university's options).

4 Discipline status (compulsoriness) - choose one of the options

- MD (Mandatory discipline),

- OD (optional discipline),

- ED (Elective (Facultative) discipline).

5 Note: 1 ECTS = 27 hours workload; ECTS=WL/27, The first week is registration and introduction to the course.